Archives

Posts Tagged ‘Threat Intelligence’

Big Data – A Global Approach To Local Threat Detection

From helping prevent loss of life in the event of a natural disaster, to aiding marketing teams in designing more targeted strategies to reach new customers, big data seems to be the chief talking point amongst a broad and diverse circle of professionals.

For Security Engineers, big data analytcs is proving to be an effective defense against evolving network intrusions thanks to the delivery of near real-time insights based on high volumes of diverse network data. This is largely thanks to technological advances that have resulted in the capacity to transmit, capture, store and analyze swathes of data through high-powered and relatively low-cost computing systems.

In this blog, we’ll take a look at how big data is bringing deeper visibility to security teams as environments increase in complexity and our reliance on pervading network systems intensifies.

Big data analysis is providing answers to the data deluge dilemma

Large environments generate gigabytes of raw user, application and device metrics by the minute, leaving security teams stranded in a deluge of data. Placing them further on the back foot is the need to sift through this data, which involves considerable resources that at best only provide a retrospective view on security breaches.

Big data offers a solution to the issue of “too much data too fast” through the rapid analysis of swathes of disparate metrics through advanced and evolving analytical platforms. The result is actionable security intelligence, based on comprehensive datasets, presented in an easy-to-consume format that not only provides historic views of network events, but enables security teams to better anticipate threats as they evolve.

In addition, big data’s ability to facilitate more accurate predictions on future events is a strong motivating factor for the adoption of the discipline within the context of information security.

Leveraging big data to build the secure networks of tomorrow

As new technologies arrive on the scene, they introduce businesses to new opportunities – and vulnerabilities. However, the application of Predictive AI Baselining analytics to network security in the context of the evolving network is helping to build the secure, stable and predictable networks of tomorrow. Detecting modern, more advanced threats requires big data capabilities from incumbent intrusion prevention and detection (IDS\IPS) solutions to distinguish normal traffic from potential threats.

By contextualizing diverse sets of data, Security Engineers can more effectively detect stealthily designed threats that traditional monitoring methodologies often fail to pick up. For example, Advanced Persistent Threats (APT) are notorious for their ability to go undetected by masking themselves as day-to-day network traffic. These low visibility attacks can occur over long periods of time and on separate devices, making them difficult to detect since no discernible patterns arise from their activities through the lens of traditional monitoring systems.

Big data Predictive AI Baselining analytics lifts the veil on threats that operate under the radar of traditional signature and log-based security solutions by contextualizing traffic and giving NOCs a deeper understanding of the data that traverses the wire.

Gartner states that, “Big data Predictive AI Baselining analytics enables enterprises to combine and correlate external and internal information to see a bigger picture of threats against their enterprises.”  It also eliminates the siloed approach to security monitoring by converging network traffic and organizing it in a central data repository for analysis; resulting in much needed granularity for effective intrusion detection, prevention and security forensics.

In addition, Predictive AI Baselining analytics eliminates barriers to internal collaborations between Network, Security and Performance Engineers by further contextualizing network data that traditionally acted as separate pieces of a very large puzzle.

So is big data Predictive AI Baselining analytics the future of network monitoring?

In a way, NOC teams have been using big data long before the discipline went mainstream. Large networks have always produced high volumes of data at high speeds – only now, that influx has intensified exponentially.

Thankfully, with the rapid evolution of computing power at relatively low cost, the possibilities of what our data can tell us about our networks are becoming more apparent.

The timing couldn’t have been more appropriate since traditional perimeter-based IDS\IPS no longer meet the demands of modern networks that span vast geographical areas with multiple entry points.

In the age of cloud, mobility, ubiquitous Internet and the ever-expanding enterprise environment, big data capabilities will and should become an intrinsic part of virtually every security apparatus.

8 Keys to Understanding NetFlow for Network Security, Performance & Overall IT Health

NetFlow for Advanced Threat Detection

These networks are vital assets to the business and require absolute protection against unauthorized access, malicious programs, and degradation of performance of the network. It is no longer enough to only use Anti-Virus applications.

By the time malware is detected and those signatures added to the antiviral definitions, access is obtained and havoc wreaked or the malware is buried itself inside the network and is obtaining data and passwords for later exploitation.

An article by Drew Robb in eSecurity Planet on September 3, 2015 (https://www.esecurityplanet.com/network-security/advanced-threat-detection-buying-guide-1.html) cited the Verizon 2015 Data Breach Investigations Report where 70 respondents reported over 80,000 security incidents which led to more than 2000 serious breaches in one year.

The report noted that phishing is commonly used to gain access and the malware  then accumulates passwords and account numbers and learns the security defenses before launching an attack.  A telling remark was made, “It is abundantly clear that traditional security solutions are increasingly ineffectual and that vendor assurances are often empty promises,” said Charles King, an analyst at Pund-IT. “Passive security practices like setting and maintaining defensive security perimeters simply don’t work against highly aggressive and adaptable threat sources, including criminal organizations and rogue states.”

So what can businesses do to protect themselves? How can they be proactive in addition to the passive perimeter defenses?

The very first line of defense is better education of users. In one test, an e-mail message was sent to the users, purportedly from the IT department, asking for their passwords in order to “upgrade security.” While 52 people asked the IT department if this was a real request, 110 mailed their passwords right back. In their attempts to be productive, over half of the recipients of phishing e-mails responded within an hour!

Another method of advanced threat protection is NetFlow Monitoring.

IT department and Managed service providers (MSP’s), can use monitoring capabilities to detect, prevent, and report adverse effects on the network.

Traffic monitoring, for example, watches the flow of information and data traversing critical nodes and network links. Without using intrusive probes, this information helps decipher how applications are using the network and which ones are becoming bandwidth hogs. These are then investigated further to determine what is causing the problem and how best to manage the issue. Just adding more bandwidth is not the answer!

IT departments review this data to investigate which personnel are the power users of which applications, when the peak traffic times are and why, and similar information in addition to flagging and diving in-depth to review anomalies that indicate a potential problem.

If there are critical applications or services that the clients rely on for key account revenue streams, IT can provide real-time monitoring and display of the health of the networks supporting those applications and services. It is this ability to observe, analyze, and report on the network health and patterns of usage that provides the ability to make better decisions at the speed of business that CIO’s crave.

CySight excels at network Predictive AI Baselining analytics solutions. It scales to collect, analyze, and report on Netflow datastreams of over one million flows/second. Their team of specialists have prepped, installed, and deployed over 1000 CySight performance monitoring solutions, including over 50 Fortune 1000 companies and some of the largest ISP/Telco’s in the world. A global leader and recognized by winning awards for Security and Business Intelligence at the World Congress of IT, CySight is also welcomed by Cisco as a Technology Development Partner.

8 Keys to Understanding NetFlow for Network Security, Performance & Overall IT Health

Balancing Granularity Against Network Security Forensics

With the pace at which the social, mobile, analytics and cloud (SMAC) stack is evolving, IT departments must quickly adopt their security monitoring and prevention strategies to match the ever-changing networking landscape. By the same token, network monitoring solutions (NMS) developers must balance a tightrope of their own in terms of providing the detail and visibility their users need, without a cost to network performance. But much of security forensics depends on the ability to drill down into both live and historic data to identify how intrusions and attacks occur. This leads to the question: what is the right balance between collecting enough data to gain the front foot in network security management, and ensuring performance isn’t compromised in the process?

Effectively identifying trends will largely depend on the data you collect

Trend and pattern data tell Security Operations Center (SOC) staff much about their environments by allowing them to connect the dots in terms of how systems may have become compromised. However, collecting large portions of historic data requires the capacity to house it – something that can quickly become problematic for IT Departments. Netflow data analysis acts as a powerful counterweight to the problem of processing and storing chunks of data, since it collects compressed header information that is far less resource-intensive than entire packets or investigating entire device log files, for example. Also, log files are often hackers’ first victims by way of deletion or corruption as a means to disguise attacks or intrusions. With CySight’s ability to collect vast quantities of uncompromised transaction data without exhausting device resources, SOCs are able to perform detailed analyses on flow information that could reveal security issues such as data leaks that occur over time. Taking into account that Netflow security monitoring can easily be configured on most devices, and pervasive security monitoring becomes relatively easy to configure in large environments.

Netflow security monitoring can give SOCs real-time security metrics

Netflow, when retained at high granularity, can facilitate seamless detection of traffic anomalies as they occur and when coupled with smart network behavior anomaly detection (NBAD), can alert engineers when data traverses the wire in an abnormal way – allowing for both quick detection and containment of compromised devices or entire segments. Network intrusions are typically detected when data traverses the environment in an unusual way and compromised devices experience spikes in multiple network telemetry metrics. As malicious software attempts to siphon information from systems, the resultant increase in out-of-the-norm activity will trigger warnings that can bring SOC teams in the loop of what is happening. CySight employs machine learning that continuously compares multi-metric baselines against current network activity and quickly picks up on anomalies overlooked by other flow solutions, even before they constitute a system-wide threat. This type of behavioral analysis of network traffic places security teams on the front foot in the ongoing battle against malicious attacks on their systems.

Network metrics are being generated on a big data scale

Few things can undermine a network’s performance and risk more than a monitoring solution that strains to provide anticipated visibility. However, considering the increasing complexity of distributed connected assets and the ways and speed in which people and IoT devices are being plugged into networks today, pervasive and detailed monitoring is absolutely crucial. Take the bring your own device (BYOD) phenomenon and the shift to the cloud, for example. Networking and security teams need visibility into where, when, and how mobile phones, tablets, smart watches, and IoT devices are going on and offline and how to better manage the flow of data to and from user devices. Mobile devices increasingly run their own versions of business applications and with BYOD cultures somewhat undermining IT’s ability to dictate the type of software allowed to run on personal devices, the need to monitor traffic flow from such devices – from both a security and a performance perspective – becomes clear.

General Netflow performance analytics tools are capable of informing NOC teams about how large IP traffic flows between devices, with basic usage statistics on a device or segment level. However, when network metrics are generated on a big data scale, traffic anomalies that require SOC investigation get lost in leaky bucket sorting algorithms of basic tools. Detecting the real underlying reasons for traffic degradation or identifying risky communications such as Ransomware, DDoS, slowDoS, peer-to-peer (p2p), the dark web (ToR), and having complete historical visibility to trackback undesirable applications become absolutely critical, but far less difficult, with CySight’s ability to easily provide information on all of the traffic that traverses the environment.

NetFlow security monitoring evolves alongside technology organically

Thanks to Netflow and the unique design and multi-metric approach that CySight has implemented, as systems evolve at an increasing rate, it doesn’t mean you need to re-invent your security apparatus every six months or so. CySight’s ubiquity, reliability, and flexibility give NOC and SOC teams deep visibility minus the administrative overheads in getting it up and running along with collecting and benefiting from big flow data’s deep insights. You can even fine-tune your monitoring to give you the right granularity you need to keep your systems safe, secure, and predictable. This results in fewer network blind spots that often act as the Achilles Heel of the modern security and network experts.

On the other end of the scale, Netflow analyzers – in their varying feature sets – give NOCs some basic ability to collect, analyze, and detect from within-the-top bandwidth metrics which some engineers may still believe is the most pertinent to their needs. Once you’ve decided on the data you need today whilst keeping an eye on what you need tomorrow, it’s now time to choose the collector that does the job best.

8 Keys to Understanding NetFlow for Network Security, Performance & Overall IT Health

3 Ways Anomaly Detection Enhances Network Monitoring

With the increasing abstraction of IT services beyond the traditional server room computing environments have evolved to be more efficient and also far more complex. Virtualization, mobile device technology, hosted infrastructure, Internet ubiquity and a host of other technologies are redefining the IT landscape.

From a cybersecurity standpoint, the question is how to best to manage the growing complexity of environments and changes in network behavior with every introduction of new technology.

In this blog, we’ll take a look at how anomaly detection-based systems are adding an invaluable weapon to Security Analysts’ arsenal in the battle against known – and unknown – security risks that threaten the stability of today’s complex enterprise environments.

Put your network traffic behavior into perspective

By continually analyzing traffic patterns at various intersections and time frames, performance and security baselines can be established, against which potential malicious activity is monitored and managed. But with large swathes of data traversing the average enterprise environment at any given moment, detecting abnormal network behavior can be difficult.

Through filtering techniques and algorithms based on live and historical data analysis, anomaly detection systems are capable of detecting even the most subtly crafted malicious software that may pose as normal network behavior. Also, anomaly-based systems employ machine-learning capabilities to learn about new traffic as it is introduced and provide greater context to how data traverses the wire, thus increasing its ability to identify security threats as they are introduced.

Netflow is a popular tool used in the collection of network traffic for building accurate performance and cybersecurity baselines with which to establish normal network activity patterns from potentially alarming network behavior.

Anomaly detection places Security Analysts on the front foot

An anomaly is defined as an action or event that is outside of the norm. But when a definition of what is normal is absent, loopholes can easily be exploited. This is often the case with signature-based detection systems that rely on a database of pre-determined virus signatures that are based on known threats. In the event of a new and yet unknown security threat, signature-based systems are only as effective as their ability to respond to, analyze and neutralize such new threats.

Since signatures do work well against known attacks, they are by no means paralyzed against defending your network. Signature-based systems lack the flexibility of anomaly-based systems in the sense that they are incapable of detecting new threats. This is one of the reasons signature-based systems are typically complemented by some iteration of a flow based anomaly detection system.

Anomaly based systems are designed to grow alongside your network

The chief strength behind anomaly detection systems is that they allow Network Operation Centers (NOCs) to adapt their security apparatus according to the demands of the day. With threats growing in number and sophistication, detection systems that can discover, learn about and provide preventative methodologies  are the ideal tools with which to combat the cybersecurity threats of tomorrow. NetFlow Anomaly detection with automated diagnostics does exactly this by employing machine learning techniques to network threat detection and in so doing, automating much of the detection aspect of security management while allowing Security Analysts to focus on the prevention aspect in their ongoing endeavors to secure their information and technological investments.

8 Keys to Understanding NetFlow for Network Security, Performance & Overall IT Health